Part Number Hot Search : 
PJSD15W GRM21 AD7824LN IR333 F195E MBR30 DD540N MAX1441
Product Description
Full Text Search
 

To Download IRFSL7430PBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  hexfet   power mosfet gds gate drain source fig 1. typical on-resistance vs. gate voltage fig 2. maximum drain current vs. case temperature benefits  improved gate, avalanche and dynamic dv/dt ruggedness  fully characterized capacitance and avalanche soa  enhanced body diode dv/dt and di/dt capability  lead-free applications  brushed motor drive applications  bldc motor drive applications  battery powered circuits  half-bridge and full-bridge topologies  synchronous rectifier applications  resonant mode power supplies  or-ing and redundant power switches  dc/dc and ac/dc converters  dc/ac inverters d s g 4 6 8 10 12 14 16 18 20 v gs, gate -to -source voltage (v) 0.0 2.0 4.0 6.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) i d = 100a t j = 25c t j = 125c 
  
     
         !"  d s g d 2 pak irfs7430pbf s d g d to-262 IRFSL7430PBF form quantity IRFSL7430PBF to-262 tube 50 IRFSL7430PBF irfs7430pbf d2-pak tube 50 irfs7430pbf tape and reel left 800 irfs7430trlpbf base part number package type standard pac k orderable part number 25 50 75 100 125 150 175 t c , case temperature (c) 0 100 200 300 400 500 i d , d r a i n c u r r e n t ( a ) limited by package v dss 40v r ds ( on ) typ. 0.97m max. 1.2m i d (silicon limited) 426a i d (package limited) 195a
 
 
        !"     calculated continuous current based on maximum allowable junction temperature. bond wire current limit is 195a. note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. 
   repetitive rating; pulse width limited by max. junction temperature.   limited by t jmax , starting t j = 25c, l = 0.15mh r g = 50 ? , i as = 100a, v gs =10v.  i sd 100a, di/dt 990a/s, v dd v (br)dss , t j 175c.   pulse width 400s; duty cycle 2%.   c oss eff. (tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  c oss eff. (er) is a fixed capacitance that gives the same energy as c oss while v ds is rising from 0 to 80% v dss .       .  this value determined from sample failure population, starting t j = 25c, l= 0.15mh, r g = 50 ? , i as = 100a, v gs =10v.
 when mounted on 1" square pcb (fr-4 or g-10 material). for recom- mended footprint and soldering techniques refer to application note #an-994. absolute maximum ratings symbol parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 25c continuous drain current, v gs @ 10v (wire bond limited) i dm pulsed drain current p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v t j operating junction and t stg storage temperature range soldering temperature, for 10 seconds (1.6mm from case) avalanche characteristics e as ( thermall y limited ) single pulse avalanche energy  mj e as ( tested ) single pulse avalanche energy tested value  i ar avalanche current  a e ar repetitive avalanche energy mj thermal resistance symbol parameter typ. max. units r jc junction-to-case  ??? 0.40 r ja junction-to-ambient (pcb mount, steady-state)  ??? 40 max. 426  301  1524 195 1360 -55 to + 175 20 2.5 c/w a c 300 760 see fig. 15, 16, 22a, 22b 375 static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v ( br ) dss drain-to-source breakdown voltage 40 ??? ??? v ? v ( br ) dss / ? t j breakdown voltage temp. coefficient ??? 0.014 ??? v/c ??? 0.97 1.2 m ? ??? 1.2 ??? v gs = 6.0v, i d = 50a v gs ( th ) gate threshold voltage 2.2 ??? 3.9 v i dss drain-to-source leakage current ??? ??? 1.0 a ??? ??? 150 i gss gate-to-source forward leakage ??? ??? 100 na gate-to-source reverse leakage ??? ??? -100 r g internal gate resistance ??? 2.1 ??? ? static drain-to-source on-resistance v gs = 20v v gs = -20v v ds = 40v, v gs = 0v v ds = 40v, v gs = 0v, t j = 125c conditions v gs = 0v, i d = 250a reference to 25c, i d = 1.0ma v ds = v gs , i d = 250a v gs = 10v, i d = 100a r ds(on)
 
 
         !"   s d g dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units gfs forward transconductance 150 ??? ??? s q g total gate charge ??? 300 460 nc q g s gate-to-source charge ??? 77 ??? q g d gate-to-drain ("miller") charge ??? 98 ??? q sync total gate charge sync. (q g - q gd ) ??? 202 ??? t d ( on ) turn-on delay time ??? 32 ??? ns t r rise time ??? 105 ??? t d ( off ) turn-off delay time ??? 160 ??? t f fall time ??? 100 ??? c iss input capacitance ??? 14240 ??? pf c oss output capacitance ??? 2130 ??? c rss reverse transfer capacitance ??? 1460 ??? c oss eff. (er) effective output capacitance (energy related) ??? 2605 ??? c oss eff. (tr) effective output capacitance (time related) ??? 2920 ??? diode characteristics symbol parameter min. typ. max. units i s continuous source current ??? ??? 426 a (body diode) i sm pulsed source current ??? ??? 1524 a (body diode)  v sd diode forward voltage ??? 0.86 1.2 v dv/dt peak diode recovery  ??? 2.7 ??? v/ns t r r reverse recovery time ??? 52 ??? ns t j = 25c v r = 34v, ??? 52 ??? t j = 125c i f = 100a q r r reverse recovery charge ??? 97 ??? nc t j = 25c di/dt = 100a/s  ??? 97 ??? t j = 125c i rrm reverse recovery current ??? 2.3 ??? a t j = 25c p-n junction diode. mosfet symbol v gs = 0v, v ds = 0v to 32v  v gs = 0v, v ds = 0v to 32v  t j = 175c, i s = 100a, v ds = 40v conditions v ds = 10v, i d = 100a t j = 25c, i s = 100a, v gs = 0v  integral reverse showing the i d = 30a v dd = 20v i d = 100a, v ds =0v, v gs = 10v r g = 2.7 ? v gs = 10v  conditions v gs = 10v  v gs = 0v v ds = 25v ? = 1.0 mhz v ds =20v i d = 100a
 
 
        !"  # fig 3. typical output characteristics fig 5. typical transfer characteristics fig 6. normalized on-resistance vs. temperature fig 4. typical output characteristics fig 8. typical gate charge vs. gate-to-source voltage fig 7. typical capacitance vs. drain-to-source voltage 2 3 4 5 6 7 v gs , gate-to-source voltage (v) 1.0 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 175c v ds = 25v 60s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 100a v gs = 10v 1 10 100 v ds , drain-to-source voltage (v) 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 4.8v bottom 4.5v 60s pulse width tj = 25c 4.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.5v 60s pulse width tj = 175c vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 4.8v bottom 4.5v 0 50 100 150 200 250 300 350 400 q g , total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 32v v ds = 20v i d = 100a
 
 
         !"  $ fig 10. maximum safe operating area fig 11. drain-to-source breakdown voltage fig 9. typical source-drain diode forward voltage fig 12. typical c oss stored energy 0.0 0.5 1.0 1.5 2.0 2.5 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , temperature ( c ) 40 41 42 43 44 45 46 47 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) id = 1.0ma fig 13. typical on-resistance vs. drain current 0 5 10 15 20 25 30 35 40 45 v ds, drain-to-source voltage (v) 0.0 0.5 1.0 1.5 2.0 2.5 e n e r g y ( j ) v ds = 0v to 32v 0 200 400 600 800 1000 1200 i d , drain current (a) 0.0 2.0 4.0 6.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) v gs = 5.5v v gs = 6.0v v gs = 7.0v v gs = 8.0v v gs =10v 0.1 1 10 100 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec dc
 
 
        !"  % fig 14. maximum effective transient thermal impedance, junction-to-case fig 15. avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 16a, 16b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figures 14) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 600 700 800 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1.0% duty cycle i d = 100a 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.0001 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. allowed avalanche current vs avalanche pulsewidth, tav, assuming ? tj = 150c and tstart =25c (single pulse)
 
 
         !"  &  ' ()*  ) +    , fig 17. threshold voltage vs. temperature  ' ()*  +-    , 
' ()*  ) +    ,  ' ()*  +-    , -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a i d = 1.0ma i d = 1.0a 0 200 400 600 800 1000 di f /dt (a/s) 0 2 4 6 8 10 12 i r r m ( a ) i f = 100a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/s) 60 100 140 180 220 260 q r r ( n c ) i f = 100a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/s) 50 100 150 200 250 300 q r r ( n c ) i f = 60a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/s) 0 2 4 6 8 10 12 i r r m ( a ) i f = 60a v r = 34v t j = 25c t j = 125c
 
 
        !"  . fig 23a. switching time test circuit fig 23b. switching time waveforms fig 22b. unclamped inductive waveforms fig 22a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 24a. gate charge test circuit fig 24b. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 22. /   )  , ( + for n-channel hexfet  power mosfets 
 
  ?  
 
  ?   
  ?  

 
   
  p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period 0    !"#$"%&%$ 0 + - + + + - - -        ?      ? 
 !
"#"" ?       $
 %% ? "#""&#  
     d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - v ds 90% 10% v gs t d(on) t r t d(off) t f   '( 1 )  $
  0.1 %       &'  + -    
 
 
         !"  !   
    
   
           
   
    
            !       
            1     - *      *1,,,*-,
 
 
        !"  to-262 part marking information to-262 package outline dimensions are shown in millimeters (inches)    

  
    


     
    
 

       
    
 
 
  
     !
 
 
           
   
   "   
   ## 1     - *      *1,,,*-,
 
 
         !"  ir world headquarters: 101 n. sepulveda blvd., el segundo, california 90245, usa to contact international rectifier, please visit http://www.irf.com/whoto-call/ 2 3       4  1 *1,,,*',), 22 5**   677+      *  1     - *     1 *1,,,*-,   
  dimensions are shown in millimeters (inches) 3 4 4 trr feed direction 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) trl feed direction 10.90 (.429) 10.70 (.421) 16.10 (.634) 15.90 (.626) 1.75 (.069) 1.25 (.049) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 4.72 (.136) 4.52 (.178) 24.30 (.957) 23.90 (.941) 0.368 (.0145) 0.342 (.0135) 1.60 (.063) 1.50 (.059) 13.50 (.532) 12.80 (.504) 330.00 (14.173) max. 27.40 (1.079) 23.90 (.941) 60.00 (2.362) min. 30.40 (1.197) max. 26.40 (1.039) 24.40 (.961) notes : 1. comforms to eia-418. 2. controlling dimension: millimeter. 3. dimension measured @ hub. 4. includes flange distortion @ outer edge. qualification level moisture sensitivit y level d2pa k ms l 1 (p er je de c j-s t d-020d ?? ) to-262 not a pp licable rohs compliant (per jedec jesd47f ?? guidelines) yes qualification information ? industrial


▲Up To Search▲   

 
Price & Availability of IRFSL7430PBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X